Warren Weaver Biography

Warren Weaver (July 17, 1894 – November 24, 1978) was an American scientist, mathematician, and science administrator. He is widely recognized as one of the pioneers of machine translation, and as an important figure in creating support for science in the United States.

Weaver received three degrees from the University of Wisconsin–Madison; a Bachelor of Science in 1916, a Civil Engineering degree in 1917 and a PhD in 1921. He became an assistant professor of mathematics at Throop College (soon to be renamed the California Institute of Technology). He served as a second lieutenant in the Air Service during World War I. After the war, he returned to teach mathematics at Wisconsin (1920–32). Weaver married Mary Hemenway, one of his fellow students at the University of Wisconsin–Madison, a few years after their graduation. They had a son, Warren Jr., and a daughter, Helen.

He was director of the Division of Natural Sciences at the Rockefeller Foundation (1932–55), and was science consultant (1947–51), trustee (1954), and vice president (from 1958) at the Sloan-Kettering Institute for Cancer Research. Weaver's chief researches were in the problems of communication in science and in the mathematical theory of probability and statistics.

At the Rockefeller Foundation, he was responsible for approving grants for major projects in molecular engineering and genetics, in agriculture (particularly for developing new strains of wheat and rice), and in medical research. During World War II, he was seconded from the Foundation to head the Applied Mathematics Panel at the U.S. Office of Scientific Research and Development, directing the work of hundreds of mathematicians in operations research. He was therefore fully familiar with the development of electronic calculating machines and the successful application of mathematical and statistical techniques in cryptography.

He was co-author (together with Claude Shannon) of the landmark work on communication, The Mathematical Theory of Communication (1949, Urbana: University of Illinois Press). While Shannon focused more on the engineering aspects of the mathematical model, Weaver developed the philosophical implications of Shannon's much larger essay (which forms about 3/4 of the book).

With Max Mason he authored the book The Electromagnetic Field which was published by the University of Chicago Press in 1929.